
www.kit.edu

AI4INDUSTRY SUMMER SCHOOL, VIRTUAL, 2021

KIT – The Research University in the Helmholtz Association

Knowledge Graphs
Knowledge Graphs and Linked Data

Dr. Tobias Käfer, Deputy Professor at KIT

27 July 20213

What are Knowledge Graphs? – By Example

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

Siemens uses Knowledge Graphs in industrial settings [2]Google coined the term Knowledge Graph (2012) [1]

[1] https://search.googleblog.com/2012/05/introducing-knowledge-graph-things-not.html http://www.google.com/insidesearch/features/search/knowledge.html (Available in the Web Archive)

[2] Hubauer, Lamparter, Haase, Herzig: Use Cases of the Industrial Knowledge Graph at Siemens. In: Proceedings of the industry track at the 17th ISWC 2018

http://www.google.com/insidesearch/features/search/knowledge.html
http://www.google.com/insidesearch/features/search/knowledge.html

A Knowledge Graph is…

27 July 20214

An Inclusive Definition of a Knowledge Graph

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

… “a graph of data intended to

accumulate and convey knowledge of

the real world, whose nodes represent

entities of interest and whose edges

represent relations between these

entities.” [1]

[1] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier, Axel Polleres, Roberto Navigli,

Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, Antoine Zimmermann: “Knowledge Graphs”. https://arxiv.org/abs/2003.02320 (2020)

https://arxiv.org/abs/2003.02320

Semantic Web Technologies

Standardised

Grounded in formal logic

> 20 years history

Built for large-scale integration of
data from multiple endpoints

Considerable adoption

Property Graph Technologies

Typically proprietary

Only partially formalised

Younger

Built to model things as graph and
to access data in one endpoint

Considerable adoption

27 July 20215

What are Knowledge Graph Technologies?

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

Graph-based abstraction intuitive in many domains

Schema heterogeneous and evolving

Reasoning may be plugged in later

To integrate different sources

For data on the web

…

27 July 20216

When are Semantic Web Technologies Applied?

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

“Semantic technology vendors […] are beginning

to learn that their customers don’t want to hear

about ontologies, inference rules, and other

nuances of the semantic technologies underlying

their products. […] As a result of this dynamic,

semantic technologies are being absorbed

into the platform and hidden from users. This

trend will continue as more and more platforms

add semantic capabilities and adopt semantic

standards.”

Gartner: “Finding Meaning in the Enterprise: A

Semantic Web and Linked Data Primer”, 2011

Where Are All Those Semantic Technologies?

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer27 July 20217

Are You Using Semantic Technologies?

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer27 July 20218

My Firefox profile folder

27 July 20219

Who Else is Using Semantic Technologies?

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

Collected by Prof. Frank van Harmelen https://www.linkedin.com/pulse/beyond-low-code-hype-knowledge-graph-driven-alan-morrison

https://www.linkedin.com/pulse/beyond-low-code-hype-knowledge-graph-driven-alan-morrison

27 July 202110

Three Buzzwords in Context

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

Tim Berners-Lee presenting Linked Data. TED CC-BY-ND

Knowledge Graphs Semantic Web Linked Data

A set of practices to use Semantic Web

technologies for publishing data on the web

The vision of intelligent agents that operate

on graph-structured data on the web and

understand humans

The practice of using graphs

for data management

Tim Berners-Lee et al. (2001). "The Semantic Web". Scientific American. 2841 (5): 34.

Technologies from the
Linked Data Principles:

URI

HTTP

RDF(S)

SPARQL

Extensions for Write Access
Rules for Reasoning, Link Following,
and Programming

Technologies to build systems with
Distributed Knowledge Graphs

27 July 202111

The Linked Data Principles Determine Our Agenda

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

Source: http://bnode.org/media/2009/07/08/semantic_web_technology_stack.png

Postulated by Tim Berners-Lee in 2006.

Collection of best practices governing the publication and consumption of
data on the web
Aim: unified method for describing and accessing resources
Later we will also see how to manipulate resource state

Linked Data Principles

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

“The Semantic Web isn't just about putting data on the web.

It is about making links, so that a person or machine can

explore the web of data. With linked data, when you have

some of it, you can find other, related, data.” 1

1 http://www.w3.org/DesignIssues/LinkedData.html

27 July 202112

http://www.w3.org/DesignIssues/LinkedData.html

1. Use URIs to name things.

 Things are not only documents, but also people, locations, concepts, etc.

2. Use HTTP URIs so that users can look up those names.

 Users refer to humans and machine agents alike.

3. When someone looks up a URI, provide useful information, using the standards
(RDF, RDFS, SPARQL).

 What “useful” means depends on the data publisher (but the data publisher should return the
“useful” data in RDF).

4. Include links to other URIs, so that they can discover more things.

Linked Data Principles1

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

1 http://www.w3.org/DesignIssues/LinkedData.html

27 July 202113

http://www.w3.org/DesignIssues/LinkedData.html

Point on a distinct resource when you share information

Linked Data follows a resource-centered view of data modelling

Resources are the basic concept of web architecture

27 July 202114

Principle 1: Use URIs as Names for Things

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

1 http://ietf.org/rfc/rfc3187.txt

Example:

Assume we would identify a book via its ISBN

(9-781497-364783)

Using the ISBN scheme from RFC 31871 we can use
urn:isbn:9-781497-364783 as resource name

for the book

http://ietf.org/rfc/rfc3187.txt

Compact URIs (CURIEs)

• We will work a lot with URIs, but full URIs can be unwieldy

• Thus, there is a syntax for abbreviated URIs1 called Compact URIs, or
CURIEs for short2

• CURIEs consist of a prefix (“namespace”) and a local reference (“local
part”)

• Assume we declare the prefix abc with a value of
http://example.org/doc.ttl#

• With the prefix abc declared, the CURIE abc:Berlin expands to
http://example.org/doc.ttl#Berlin

1 http://www.w3.org/TR/curie/
2 CURIEs are an extension to QNames, which are used to abbreviate attribute URIs in XML documents

27 July 2021 AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias

Käfer
15

http://www.w3.org/TR/curie/

URIs in Relative Form
In contrast to absolute HTTP URIs (those starting with http:// and
including a hostname), HTTP URIs can also occur in relative form
They have to be interpreted relatively to an absolute URI
A URI-reference is either a URI or a relative reference1

We can also use the notation known from file systems: “.” refers to
the current directory, while “..” refers to the parent directory2

Relative

reference

Base URI Resolves to the URI

research/ http://example.edu/ http://example.edu/research/

./academics/ http://example.edu/research/ http://example.edu/research/academics/

../academics/ http://example.edu/research/ http://example.edu/academics/

#people http://example.edu/research/ http://example.edu/research/#people

http://example.edu/doc http://example.edu/doc

1 http://tools.ietf.org/html/rfc3986#section-4.1
2 for detailed technical instructions and further examples: http://tools.ietf.org/html/rfc3986#section-5.2

AI4Industry | Knowledge Graphs I: Knowledge Graphs and

Linked Data | Dr. Tobias Käfer
27 July 202116

http://tools.ietf.org/html/rfc3986#section-4.1
http://tools.ietf.org/html/rfc3986#section-5.2

Given an identifier for a thing (URI), use HTTP as a mechanism to
retrieve more information about that thing

That is, we require some form of mapping between a

URI as name (identifying a book, a person, a place or a chemical element)
and a

URI as location (identifying a machine-readable description about the book,
the person, the place or the chemical element).

Principle 2: Use HTTP URIs to Allow for Lookup

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer27 July 202117

Assume we want to know more about a URI-defined
resources, say for our book having the URI
urn:isbn:9-781497-364783

With the ISBN you can go to your local bookstore, and a clerk there can look
up the ISBN in their catalogue

Or you type the ISBN into a search box of an online bookstore or of a library,
to get more information about the book

Ultimately, there will be a query to a database of things identified via an
ISBN, maintained by some organisation

27 July 202118

Principle 2: Use HTTP URIs to Allow for Lookup

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

HTTP URIs provide an inherent mechanism for lookup and unites logical and
physical address

You can type an identifier into your browser and immediately get some
information back tight connection between identifier and source

E.g. http://www.w3.org/People/Berners-Lee/card is the URI of Tim Berners-
Lee’s machine-readable homepage

No additional information or mediator is needed to access information

Just type HTTP URI into browser and access HTML, JPEG, PNG, GIF, MP4
files – any content that can be serialised into bytes

27 July 202119

Principle 2: Use HTTP URIs to Allow for Lookup

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

http://www.w3.org/People/Berners-Lee/card

Referencing a resource is easy: just write the URI

But what about dereferencing?

How do you get the referenced resource?

What do you get?

Referencing a Resource, Dereferencing a URI

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer27 July 202120

The act of retrieving a representation of a resource identified by a URI is
known as dereferencing that URI

Applications, such as browsers, render the retrieved representation for the
user

Most web users do not distinguish between a resource and the rendered
representation they receive by accessing it

Information resources associated with a resource need to have their own
URIs

They are themselves distinct resources and provide representations

Referencing a Resource, Dereferencing a URI1

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

1 https://www.w3.org/2001/tag/doc/httpRange-14/2007-05-31/HttpRange-14

27 July 202121

https://www.w3.org/2001/tag/doc/httpRange-14/2007-05-31/HttpRange-14

It is important to differentiate between a resource and an informational
document about that resource1

As you cannot retrieve the resource via your browser, a representation
is needed

Referencing a Resource, Dereferencing a URI

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

RDF

http://example.org/eiffel-datahttp://example.org/eiffel-data#Tower

1 Talking about differentiation: this is also not the Eiffel Tower itself. It is a picture of the Eiffel Tower and the picture‘s URI is
https://upload.wikimedia.org/wikipedia/commons/thumb/8/85/Tour_Eiffel_Wikimedia_Commons_(cropped).jpg/360px-Tour_Eiffel_Wikimedia_Commons_(cropped).jpg

27 July 202122

As the document about the resource is also a resource itself, it needs its
own URI (Information Resource)

To reference the „Eiffel Tower“, only the URI of the “resource” is used:

Referencing a Resource, Dereferencing a URI

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

http://example.org/eiffel-

data#Tower

:Paris
:Gustave

Eiffel

:built :attraction

http://example.org/eiffel-

data

:Paris
:Gustave

Eiffel

:built :attraction

27 July 202123

A user that wants information about a given resource might not know the
URI of the describing document (the associated information resource)

In the Semantic Web, two possibilities for providing the information
resource of a resource are used: “hash URIs” and “slash URIs”

Referencing a Resource, Dereferencing a URI

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer27 July 202124

Resource vs. Information Resource

Hash URIs

• Retrieving the document‘s URI by stripping off the hash of a hash URI

http://example.org/karlsuhe-data#Palace

http://example.org/karlsruhe-data

Resource

Information

Resource

27 July 2021 AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias

Käfer
25

Resource vs. Information Resource

Slash URIs

• Retrieving the document‘s URI by an automated HTTP redirect (303)

http://dbpedia.org/resource/Karlsruhe_Palace

http://dbpedia.org/data/Karlsruhe_Palace.ttl

Resource

Information

Resource

27 July 2021 AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias

Käfer
26

Information
Resource

http://dbpedia.org/resource/Karlsruhe_Palace

identifies

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbr: <http://dbpedia.org/resource/> .

dbr:Karlsruhe_Palace georss:point "49.014 8.404" ;

dbo:wikiPageExternalLink <http://www.landesmuseum.de/website/> ;

rdf:type yago:Location100027167 ,

yago:WikicatMuseumsOfAncientRome ,

yago:Facility103315023 ,

yago:Whole100003553 .

describes

Resource vs. Information Resource

This document describes the Karlsruhe Palace

Resource

http://dbpedia.org/data/Karlsruhe_Palace.ttl

Image by NordNordWest - Own work, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=16921753

Thing

http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/data/Karlsruhe_Palace.n3

Addressing HTTP-Range 14 using
Slash URIs and HTTP Content Negotiation

Let‘s try an example:
● I want to have information about the Karlsruhe Palace from DBpedia

http://dbpedia.org/page/Karlsruhe_Palace

1

2 HTTP/2 303 See Other

HTTP GET request

Accept Header: text/html

URI represents “the description of the thing”3
HTTP GET request

Accept Header: text/html

HTML Document4

http://dbpedia.org/resource/Karlsruhe_Palace

URI represents “the name of the thing”

Image by NordNordWest - Own work, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=16921753

27 July 2021 AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias

Käfer
28

http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower

Addressing HTTP-Range 14 using
Slash URIs and HTTP Content Negotiation

Let‘s try an example:
● I want to have machine-readable information about the Karlsruhe Palace from DBpedia

http://dbpedia.org/resource/Karlsruhe_Palace

http://dbpedia.org/data/Karlsruhe_Palace.ttl

1

2 HTTP/2 303 See Other

HTTP GET request

Accept Header: text/turtle

URI represents “the description of the thing”3
HTTP GET request

Accept Header: text/turtle

URI represents “the name of the thing”

RDF (Turtle) Document4

Image by NordNordWest - Own work, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=16921753

27 July 2021 AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias

Käfer
29

http://dbpedia.org/
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Eiffel_Tower

Addressing HTTP-Range 14 using
Slash URIs and HTTP Content Negotiation

Let‘s try it ourselves:

● Retrieve information about the Karlsuhe Palace from DBpedia

● Retrieve machine readable information about the Karlsruhe Palace from

DBpedia

curl -L -H "Accept: text/html" http://dbpedia.org/resource/Karlsruhe_Palace

curl -L -H "Accept: text/turtle" http://dbpedia.org/resource/Karlsruhe_Palace

Image by NordNordWest - Own work, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=16921753

27 July 2021 AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias

Käfer
30

When somebody looks up a URI, provide useful information using the
standards

RDF is the data model for both Semantic Web and Linked Data,
providing content meaningful to computational users

You can eg. write RDF in files, store and query RDF in so-called Triple
Stores (databases for RDF), or embed RDF in other formats (eg. HTML)

Principle 3: Provide Useful Information

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer27 July 202131

RDF is the foundational data model for both Semantic Web and Linked Data

RDF comes with a formal underpinning we can mathematically define and
proof things

An RDF triple is the basic RDF concept describing information as a subject-
property-object structure

Property (or predicate) specifies relation between subject and object

Triples can be visualised:

Multiple triples form an RDF graph

RDF graphs can be visualised as directed labelled graph

Resource Description Framework (RDF)

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

1 http://www.w3.org/RDF/icons/

1

ObjectSubject
Predicate

27 July 202132

http://www.w3.org/RDF/icons/

Berlin is the capital of Germany.

Berlin is a state of Germany.

Berlin has a population of 3.5 Million.

Berlin is located on the bank of the Spree.

Berlin is located on the bank of the Havel.

Pankow is a borough of Berlin.

Neukölln is a borough of Berlin.

27 July 202133

Facts in „Triples“

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

Example RDF Graph within an RDF Document

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

:DE

:Berlin

3500000

:Spree

:Havel

:Neukoelln
:Pankow

:capital

:state

:population

:borough

:locatedOnBank

:borough

RDF

Note: RDF triples form a

directed labelled graph

:locatedOnBank

Let’s use “:” as abbreviation

for “http://example.org/doc.ttl#”

27 July 202134

Have a piece of paper ready

Use the facts on the right

Identify connections, things, and
values

Depict things in circles

Depict values in rectangles

Depict connections using arrows

Draw the graph on a piece of
paper

myProductionSystem is a System

myProductionSystem has
subsystem roboticArm1

myProductionSystem has
subsystem conveyorBelt2

roboticArm1 is a System

roboticArm1 is a RoboticArm

roboticArm1 has manufacturer
ABB

conveyorBelt2 is a System

conveyorBelt2 has speed 0.1

27 July 202135

Exercise: Draw an (RDF) Graph

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

27 July 202136

Sample Solution

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

:myProducti

onSystem

0.1

:System

:robotic

Arm1

:ABB

:conveyor

Belt2

:hasManufacturer

:isA

: hasSpeed
:hasSubSystem

Let’s use “:” as abbreviation

for “http://example.org/doc.ttl#”

:hasSubSystem:isA

:isA

:Robotic

Arm
:isA

Associating things from one source to things from another source creates the
mesh we will later use to perform algorithms on

Links are required to be able to connect the separate data graphs together

The graph-structured data model and the re-use of URIs across graphs allows
for an easy merging of multiple graphs

Central points on the web provide URIs for frequently used resources (e.g.,
DBpedia). Using these allows for a common understanding of descriptions and
fast merging of multiple graphs

Principle 4: Include Links to Other URIs

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer27 July 202137

Linked Data builds on HTTP

Everybody can run a web server

python3 -m http.server

Serves the contents of the working directory (which
may contain RDF documents)

vs. centralised systems of today (Facebook &
Co.)

Decentralised publishing a distributed system

Research challenge:
Systems/algorithms/… that deal with large amounts
of small interlinked RDF documents on the web

27 July 202138

Distributed Knowledge Graphs

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

1 K. Brooker, Vanit. Fair, 2018, 60(696), 62-67.

A Web of RDF Documents…

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

RDF

RDF

RDF
RDF

RDF

RDF

27 July 202139

…Using URIs…

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

Circles with same color indicates identical resource

Documents and circles in the same color indicate correspondence between resource and information resource

Triple

27 July 202140

…Can Actually Form…

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer27 July 202141

…a Web of Data

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

• Each node is one resource, meaningfully linked to other resources, but

acquired from different sources Distributed Knowledge Graph

27 July 202142

The slides have been prepared by Tobias Käfer, Andreas Harth, and
Lars Heling

This content is licensed under a Creative Commons Attribution 4.0
International license (CC BY 4.0):
http://creativecommons.org/licenses/by/4.0/

27 July 202143

Creative Commons Licensing

AI4Industry | Knowledge Graphs I: Knowledge Graphs and Linked Data | Dr. Tobias Käfer

http://creativecommons.org/licenses/by/4.0/

Source: http://lod-cloud.net

AI4INDUSTRY SUMMER SCHOOL

KIT – The Research University in the Helmholtz Association www.kit.edu

RDF Concepts and Syntax
How to represent data on the web?

Dr. Tobias Käfer

2

Desiderata for a Standardised Data Model for Data

on the Web

Low level of surprise (=low entropy) for machines1 and those who program
them

The higher the entropy, the more energy needed to process information
(computing power, lines of code, memory, …) 1

“Energy” could be put into:

Integrating data from different sources (merge operation, term disambiguation)

Writing processors

Validating processors

Running processors

Contrast the “energy” required to process files with MIME types:

text/uri-list

text/plain

text/html

application/xml

application/json

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

1 Cf. Mike Amundsen: “Autonomous Agents on the Web”, Keynote at the Workshop for Services an Applications over Linked Data, 2013

https://www.slideshare.net/rnewton/autonomous-agents-on-the-web-22078931

3

ENTER: THE RESOURCE

DESCRIPTION FORMAT

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

4

Resource Description Framework (RDF)

RDF is the foundational data format for both

Semantic Web and Linked Data

An RDF triple is the basic RDF concept describing information as a

subject-property-object structure

Property (or predicate) specifies relation between subject and object

Triples can be viewed graphically:

RDF graphs can be presented as directed labelled graph

1 http://www.w3.org/RDF/icons/

1

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

ObjectSubject
Predicate

http://www.w3.org/RDF/icons/

5

RDF Term Overview: URIs - Blank Nodes - Literals

URIs are used to globally identify resources

Blank nodes refer to resources, too, but these resources can only be

identified within a file and are not globally addressable (later more)

Literals refer to concrete data values such as strings, integers, floats or

dates. In RDF, we can use the datatypes defined as part of the XML

Schema recommendation

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

http://example.org/doc.ttl#Berlin

"Berlin"

http://example.org/doc.ttl#capital

URI as subject/object

URI as predicate

Literal as object

Blank node as subject/object

6

RESOURCE DENOTATION

USING RDF TERMS

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

7

Domain of Discourse

Characterisation (Resource, Property, Universe): A resource is a notion

for things of discourse, be they abstract or concrete, physical or virtual.

We write IR for the set of resources, also called the universe or domain.

We write IP for the set of property resources.

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

Universe

IR

Properties

IP

The set of all things we want to talk about The set of resources for the URIs in predicate position

8

URIs – Uniform Resource Identifiers (Recap

and Terminology)

We use URIs as identifiers

Full URIs

…start with a scheme

Example: http://example.org/doc.ttl#Berlin

CURIEs

Allow for abbreviating URIs

Example: with doc: being short for http://example.org/doc.ttl#, we

can write doc:Berlin for http://example.org/doc.ttl#Berlin

IRIs

Standard to allow for using characters outside of US-ASCII in URIs

We typically use “URI“ and “IRI“ interchangably

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

http://example.org/doc.ttl#Berlin

http://example.org/doc.ttl#capital

URI as subject/object

URI as predicate
https://tools.ietf.org/rfc/rfc3986.txt

https://tools.ietf.org/rfc/rfc3986.txt

9

URI Recap, Some Terminology and Practices

Hierarchical URIs:

HTTP URIs are hierarchical in the path part of the URI

Example: http://example.org/path/to/resource

Relative URIs

With hierarchical URIs you can have relative URIs that traverse the path

Example: ../../relative/../path/to/resource

Reference Resolution

Relative URIs can be converted to absolute URIs by resolving them

Example: resolving ../../relative/../path/to/resource against

http://example.org/path/to/resource yields the same URI

Hash URIs

In Linked Data, we make the difference between a thing and the document about the thing. One

way of expressing the difference is to use hash URIs

Example: http://example.org/doc.ttl#Berlin

Slash URIs

Another way of making the difference is to use slash URIs for the thing and then use HTTP

redirection to the document

Example: http://dbpedia.org/resource/Berlin redirects (303) to

http://dbpedia.org/data/Berlin.ttl which in turn serves RDF

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

10

RDF Literals

Kinds of Literals:

Simple Literals

Language-tagged Literals

BCP47 language tags

Typed literals

All literals have an (implicit) datatype literals are pairs < 𝑙𝑒𝑥, 𝑑𝑡 >

For simple literals: xsd:string

For language-tagged literals: rdf:langString triples < 𝑙𝑒𝑥, 𝑑𝑡, 𝑙𝑎𝑛𝑔 >

Eg. XML Schema datatypes

Lexical forms and value space

Term Equality of two Literals:

Need to be equal, character by character:

Lexical forms

Datatype IRIs

Language tags (if any)

 Two literals can have the same value without being the same RDF term.

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

"Berlin" Literal as object

https://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal http://tools.ietf.org/html/bcp47

"Berlin"@de

"1"^^xsd:integer "01"^^xsd:integer

Two typed literals with different lexical forms denoting the same value

Simple Literal

Language-tagged Literal

https://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal
http://tools.ietf.org/html/bcp47

11

Blank Nodes

Blank nodes say that something […] exists, without explicitly naming it

Blank nodes denote resources

Blank nodes do not identify resources

Blank nodes do not have identifiers in the RDF abstractly speaking (see

depiction below)

In implementations and serialisations, blank nodes have identifiers

(which are only locally scoped)

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

Blank node as subject/object

https://www.w3.org/TR/rdf11-concepts/#section-blank-nodes

https://www.w3.org/TR/rdf11-concepts/#section-blank-nodes

12

RESOURCE DESCRIPTIONS IN

RDF GRAPHS

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

13

RDF – A Graph-based Data Model

We arrange RDF Terms in RDF Triples the edges in RDF Graphs

Definition (RDF Triple, RDF Graph). Let 𝒰 be the set of URIs, ℬ the set of blank

nodes, and ℒ the set of RDF literals. A tuple < 𝑠, 𝑝, 𝑜 >∈ (𝒰 ∪ ℬ) × 𝒰 × (𝒰 ∪ ℬ ∪
ℒ) is called an RDF triple, where 𝑠 is the subject, 𝑝 is the predicate and 𝑜 is the

object. A set of RDF triples is called RDF graph.

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

:DE

:Berlin

:Spree

:Havel

:Neukoelln
:Pankow

:capital

:state

:borough

:locatedOnBank

:borough

Note: RDF triples form a

directed labelled graph

:locatedOnBank

Instead of http://example.org/doc.ttl# we write just write“:”

RDF

Graph

14

Remember…

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

:myProductio

nSystem

0.1

:System

:robotic

Arm1

:ABB

:conveyorB

elt2

:hasManufacture

r

:isA

: hasSpeed
:hasSubSystem

Let’s use “:” as abbreviation

for “http://example.org/doc.ttl#”

:hasSubSystem:isA

:isA

:Robotic

Arm

:isA

15

N-ary Relations

An RDF property represents a binary relation between resources

But there are cases where we want to model relations between more

than two resources

So-called n-ary relations can be modelled as binary relations, if we

think of the relation itself as a resource

Often, we use blank nodes to identify the relation (as resource)

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

16

Example: N-ary Relation in RDF

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

:Berlin

3382169

:value

:population 2000
:year

3460725

:value

2010
:year:population

Instead of

http://example.org/doc.ttl#

we write just write“:”

17

RDF SERIALISATION FORMATS

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

18

RDF Syntaxes

Based on Notation3 (an expressive textual syntax for a superset of the

RDF data model)

N-Triples is a very simple syntax, in which one triple is written in one line

Turtle adds syntactical features to N-Triples that increase human

readability and writeability (eg. CURIEs, abbreviations)

RDF/XML is a XML-based syntax with high historical relevance and

practical prevalence

JSON-LD is a JSON-based syntax, which allows for eased

interoperability of RDF with JavaScript code

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

N3

Turtle

N-Triples

19

N-Triples – A Simple Syntax for RDF Triples

N-Triples provides a very straight-forward way to write down RDF

triples

The basic structure consists of subject property object triples, followed

by a dot and a newline

URIs are enclosed in angle brackets (“<>”). No relative URIs!

Blank nodes are prefixed with an underscore and a colon (“_:”)

Literals are enclosed in quotation marks (“""”)

Comments are marked with a hash character (“#”)

The s p o . representation is also called simple triple form

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#capital> <http://example.org/doc.ttl#DE> .

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

http://example.org/doc.ttl#DEhttp://example.org/doc.ttl#Berlin
http://example.org/doc.ttl#capital

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#label> "Berlin" .

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#population> _:bn . # part of n-ary rel.

https://www.w3.org/TR/n-triples/

https://www.w3.org/TR/n-triples/

20

Simple, Datatyped, and Language-tagged

Literals in N-Triples

Simple, Datatyped and Language-tagged Literals enclose the lexical

form in quotation marks (“""”)

Datatyped literals use two caret characters (“^^”) to specify the

datatype URI

For example, a literal denoting the integer value 3460725 is written as

"3460725"^^<http://www.w3.org/2001/XMLSchema#integer>

Language-tagged literals use the at character (“@”) to specify the

language

For example, the literal denoting Berlin in German is written as

"Berlin"@de

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

21

Turtle

Turtle – the “Terse RDF Triple Language”

Easier for a human to read and write than N-Triples

Will be used throughout the lecture

Supports:

1. CURIEs

2. Relative URIs

3. Abbreviation for rdf:type (“a”)

4. Abbreviations for literals with some XML Schema datatypes

5. Abbreviations for repetition of subject (“;”) and subject+predicate (“,”)

6. Abbreviations for RDF lists (later)

We now derive Turtle starting with N-Triples considering above points

except 2 and 6

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

22

RDF – A Graph-based Data Model

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

:DE
:Berlin

:Spree

:Havel

:Neukoelln
:Pankow

:capital

:state

:borough

:locatedOnBank

:borough

Note: RDF triples form a

directed labelled graph

:locatedOnBank

Instead of http://example.org/doc.ttl# we write just write“:”

3382169

:value

:population

2000

:year

3460725
:value

2010
:year

:population

Berlin

:label

:City

23

N-Triples

<http://example.org/doc.ttl#Berlin> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://example.org/doc.ttl#City> .

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#capital> <http://example.org/doc.ttl#DE> .

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#state> <http://example.org/doc.ttl#DE> .

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#locatedOnBank> <http://example.org/doc.ttl#Spree> .

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#locatedOnBank> <http://example.org/doc.ttl#Havel> .

<http://example.org/doc.ttl#Pankow> <http://example.org/doc.ttl#borough> <http://example.org/doc.ttl#Berlin> .

<http://example.org/doc.ttl#Neukoelln> <http://example.org/doc.ttl#borough> <http://example.org/doc.ttl#Berlin> .

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#label> "Berlin"@de .

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#population> _:genid1 .

<http://example.org/doc.ttl#Berlin> <http://example.org/doc.ttl#population> _:genid2 .

_:genid1 <http://example.org/doc.ttl#value> "3382169"^^<http://www.w3.org/2001/XMLSchema#integer> .

_:genid1 <http://example.org/doc.ttl#year> "2000"^^<http://www.w3.org/2001/XMLSchema#integer> .

_:genid2 <http://example.org/doc.ttl#value> "3460725"^^<http://www.w3.org/2001/XMLSchema#integer> .

_:genid2 <http://example.org/doc.ttl#year> "2010"^^<http://www.w3.org/2001/XMLSchema#integer> .

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

24

+ CURIEs

You can allow for CURIEs by issuing @prefix directives of the form:

@prefix prefix-label: <associated URI> .

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#integer> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
:Berlin rdf:type :City .
:Berlin :capital :DE .
:Berlin :state :DE .
:Berlin :locatedOnBank :Spree .
:Berlin :locatedOnBank :Havel .
:Pankow :borough :Berlin .
:Neukoelln :borough :Berlin .
:Berlin :label "Berlin"@de .
:Berlin :population _:genid1 .
:Berlin :population _:genid2 .
_:genid1 :value "3382169"^^xsd:integer .
_:genid1 :year "2000"^^xsd:integer .
_:genid2 :value "3460725"^^xsd:integer .
_:genid2 :year "2010"^^xsd:integer .

25

+ Abbreviation

for rdf:type

You can abbreviate rdf:type with “a”

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#integer> .

:Berlin a :City .
:Berlin :capital :DE .
:Berlin :state :DE .
:Berlin :locatedOnBank :Spree .
:Berlin :locatedOnBank :Havel .
:Pankow :borough :Berlin .
:Neukoelln :borough :Berlin .
:Berlin :label "Berlin"@de .
:Berlin :population _:genid1 .
:Berlin :population _:genid2 .
_:genid1 :value "3382169"^^xsd:integer .
_:genid1 :year "2000"^^xsd:integer .
_:genid2 :value "3460725"^^xsd:integer .
_:genid2 :year "2010"^^xsd:integer .

26

+ Abbreviations

for Some XML Schema Datatypes

You can use shorthands for numbers typed with xsd:integer ,

xsd:decimal (with “.”), and xsd:float (written in scientific notation)

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#integer> .

:Berlin a :City .
:Berlin :capital :DE .
:Berlin :state :DE .
:Berlin :locatedOnBank :Spree .
:Berlin :locatedOnBank :Havel .
:Pankow :borough :Berlin .
:Neukoelln :borough :Berlin .
:Berlin :label "Berlin"@de .
:Berlin :population _:genid1 .
:Berlin :population _:genid2 .
_:genid1 :value 3382169 .
_:genid1 :year 2000 .
_:genid2 :value 3460725 .
_:genid2 :year 2010 .

27

+ Abbreviations

for Repetitions of Subject+Predicate

Use the colon “,” in consecutive triples to repeat subject and predicate

Order the triples wisely to benefit; indentation helps for the overview

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#integer> .

:Berlin a :City .
:Berlin :capital :DE .
:Berlin :state :DE .
:Berlin :locatedOnBank :Spree , :Havel .
:Pankow :borough :Berlin .
:Neukoelln :borough :Berlin .
:Berlin :label "Berlin"@de .
:Berlin :population _:genid1 , _:genid2 .
_:genid1 :value 3382169 .
_:genid1 :year 2000 .
_:genid2 :value 3460725 .
_:genid2 :year 2010 .

28

+ Abbreviations

for Repetitions of Subject

Use the semicolon “;” in consecutive triples to repeat the subject

Order the triples wisely to benefit; indentation helps for the overview

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#integer> .

:Berlin a :City ;
:capital :DE ;
:state :DE ;
:locatedOnBank :Spree , :Havel .

:Pankow :borough :Berlin .
:Neukoelln :borough :Berlin .
:Berlin :label "Berlin"@de ;
:population _:genid1 , _:genid2 .

_:genid1 :value 3382169 ;
:year 2000 .

_:genid2 :value 3460725 ;
:year 2010 .

Are the triples in

a smart order?

29

+ Abbreviations

for Blank Nodes

Use brackets “[]” to abbreviate blank nodes

Note that you need to group all mentions of the former blank node ID

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#integer> .

:Berlin a :City ;
:capital :DE ;
:state :DE ;
:locatedOnBank :Spree , :Havel .

:Pankow :borough :Berlin .
:Neukoelln :borough :Berlin .
:Berlin :label "Berlin"@de ;
:population [:value 3382169 ; :year 2000] ,

[:value 3460725 ; :year 2010] .

30

Now You Know Turtle

Language features not covered in the previous slides:

Relative URIs (see slides on URIs)

RDF list syntax (see later)

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#integer> .

:Berlin a :City ;
:capital :DE ;
:state :DE ;
:locatedOnBank :Spree , :Havel .

:Pankow :borough :Berlin .
:Neukoelln :borough :Berlin .
:Berlin :label "Berlin"@de ;
:population [:value 3382169 ; :year 2000] ,

[:value 3460725 ; :year 2010] .

31

Turtle Exercise

Describe the facts from

as RDF Triples in Turtle Syntax

Invent URIs as necessary

Type your questions into the chat
and raise your hand once you‘re
done

Steps:
1. Open a text editor, eg. Nano

nano production.nt

2. Don‘t use abbreviations, ie. write N-
Triples

3. Double-check your solution using
rapper or RDFShape [1]
rapper -i ntriples production.nt

4. Copy the file to a new file
cp production.nt production.ttl

5. Edit the new file and apply as many
Turtle abbreviations as possible

6. Double-check your solution using
rapper or RDFShape [1]
rapper -i turtle production.ttl

myProductionSystem isA System

myProductionSystem hasSubSystem
roboticArm1

myProductionSystem hasSubSystem
conveyorBelt2

roboticArm1 isA System

roboticArm1 isA RoboticArm

roboticArm1 hasManufacturer ABB

conveyorBelt2 isA System

conveyorBelt2 hasSpeed 0.1

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

[1] http://rdfshape.herokuapp.com/dataConversions

http://rdfshape.herokuapp.com/dataConversions

32

Sample Solution – Step 2

<http://example.org/#myProductionSystem> <http://example.org/#isA> <http://example.org/#System> .

<http://example.org/#myProductionSystem> <http://example.org/#hasSubSystem> <http://example.org/#roboticArm1> .

<http://example.org/#myProductionSystem> <http://example.org/#hasSubSystem> <http://example.org/#conveyorBelt2> .

<http://example.org/#roboticArm1> <http://example.org/#isA> <http://example.org/#System> .

<http://example.org/#roboticArm1> <http://example.org/#isA> <http://example.org/#RoboticArm> .

<http://example.org/#roboticArm1> <http://example.org/#hasManufacturer> <http://example.org/#ABB> .

<http://example.org/#conveyorBelt2> <http://example.org/#isA> <http://example.org/#System> .

<http://example.org/#conveyorBelt2> <http://example.org/#hasSpeed> "0.1" .

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

33

Sample Solution – Step 5

@prefix : <http://example.org/#> .

:myProductionSystem a :System ; # <- let‘s pretend on the previous slide, we had rdf:type

:hasSubSystem :roboticArm1 , :conveyorBelt2 .

:roboticArm1 a :System , :RoboticArm ; # <- let‘s pretend on the previous slide, we had rdf:type

:hasManufacturer :ABB .

:conveyorBelt2 a :System ;

:hasSpeed "0.1" .

:hasSpeed 0.1 . <- In the previous slide, we had a string so we can‘t write this line or the two following:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:hasSpeed "0.1"^^xsd:decimal .

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

34

RDF/XML Example

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns="http://example.org/doc.ttl#">

<rdf:Description rdf:about="http://example.org/doc.ttl#Berlin">
<rdf:type rdf:resource="http://example.org/doc.ttl#City"/>
<capital rdf:resource="http://example.org/doc.ttl#DE"/>
<state rdf:resource="http://example.org/doc.ttl#DE"/>
<locatedOnBank rdf:resource="http://example.org/doc.ttl#Spree"/>
<locatedOnBank rdf:resource="http://example.org/doc.ttl#Havel"/>
<borough rdf:resource="http://example.org/doc.ttl#Berlin"/>

</rdf:Description>
<rdf:Description rdf:about="http://example.org/doc.ttl#Pankow">
<borough rdf:resource="http://example.org/doc.ttl#Berlin"/>

</rdf:Description>
<rdf:Description rdf:about="http://example.org/doc.ttl#Neukoelln">
<borough rdf:resource="http://example.org/doc.ttl#Berlin"/>

</rdf:Description>
<rdf:Description rdf:about="http://example.org/doc.ttl#Berlin">
<label xml:lang="de">Berlin</label>
<population rdf:nodeID="genid1"/>
<population rdf:nodeID="genid2"/>

</rdf:Description>
<rdf:Description rdf:nodeID="genid1">
<value rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">3382169</value>
<year rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">2000</year>

</rdf:Description>
<rdf:Description rdf:nodeID="genid2">
<value rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">3460725</value>
<year rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">2010</year>

</rdf:Description>
</rdf:RDF>

35

JSON-LD Example

{

"@context": {

"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

"doc": "http://example.org/doc.ttl#",

"people": "doc:population",

"country": { "@id": "doc:state", "@type": "@id" },

"borough": { "@reverse": "doc:borough", "@type": "@id" },

"locatedOnBank": { "@id": "doc:locatedOnBank", "@type": "@id" }

},

"@graph": [

{

"@id": "doc:Berlin",

"http://example.org/doc.ttl#label": { "@value": "Berlin", "@language": "de“ },

"http://example.org/doc.ttl#capital": { "@id": "doc:DE" },

"rdf:type": { "@id": "doc:City" },

"locatedOnBank": ["doc:Havel", "doc:Spree"],

"people": [{ "doc:value": 3382169, "doc:year": 2000 },

{ "doc:value": 3460725, "doc:year": 2010 }],

"country": "doc:DE",

"borough": ["doc:Neukoelln", "doc:Pankow“]

}

]

}

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

36

Exercise

Open a text editor and turn the graph that you have drawn into Turtle.

Double-check your syntax using

http://rdfshape.herokuapp.com/dataConversions

(make sure if you copy-and-paste that URIs like file://app get turned back

into what they were before)

Put your Turtle file on the web

Create an account at a SoLiD POD provider, e.g.

http://solidcommunity.net/

Go to your public folder

Create a new file and paste your Turtle

Verify the results, by viewing the URI in your browser or using curl

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

http://rdfshape.herokuapp.com/dataConversions
http://solidcommunity.net/

37

WORKING WITH MULTIPLE

RDF GRAPHS

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

38

RDF – A Graph-based Data Model

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

:DE
:Berlin

:Spree

:Havel

:Neukoelln
:Pankow

:capital

:state

:borough

:locatedOnBank

:borough

Note: RDF triples form a

directed labelled graph

:locatedOnBank

Instead of http://example.org/doc.ttl# we write just write“:”

3382169

:value

:population

2000

:year

3460725
:value

2010
:year

:population

Berlin

:label

:City

39

Isomorphism As Equivalence Relation

We employ isomorphism to check whether two RDF mean the same

Are those two graphs the same?

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

:DE :Berlin
:label

Berlin
:state

:DE:Berlin
:state

Berlin
:label

@prefix : <http://example.org/doc.ttl#> .
:Berlin :state :DE .
:Berlin :label "Berlin"@de .

@prefix : <http://example.org/doc.ttl#> .
:Berlin :label "Berlin"@de .
:Berlin :state :DE .

vs.

vs.

40

Isomorphism As Equivalence Relation

We employ isomorphism to check whether two RDF mean the same

Are those two graphs the same?

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
:Berlin :population _:bn1 .
_:bn1 :year 2010 .
_:bn1 :value 3460725 .

@prefix : <http://example.org/doc.ttl#> .
_:genid1 :value 3460725 .
:Berlin :population _:genid1 .
_:genid1 :year 2010 .

vs.

vs.

3460725
:value

2010
:year

:population
:Berlin

2010
:year

3460725
:value

:population
:Berlin

41

Isomorphism As Equivalence Relation

Two RDF graphs are isomorphic if there is a bijection 𝑀 between the

two sets of nodes in the graphs 𝐺 and 𝐺’ such that:

𝑀 maps blank nodes to blank nodes.

𝑀(𝑙𝑖𝑡) = 𝑙𝑖𝑡 for all RDF literals 𝑙𝑖𝑡 which are nodes of 𝐺.

𝑀(𝑖𝑟𝑖) = 𝑖𝑟𝑖 for all IRIs 𝑖𝑟𝑖 which are nodes of 𝐺.

The triple (𝑠, 𝑝, 𝑜) is in 𝐺 if and only if the triple (𝑀(𝑠), 𝑝,𝑀(𝑜)) is in 𝐺′

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

@prefix : <http://example.org/doc.ttl#> .
:Berlin :population _:bn1 .
_:bn1 :year 2010 .
_:bn1 :value 3460725 .

@prefix : <http://example.org/doc.ttl#> .
_:genid1 :value 3460725 .
:Berlin :population _:genid1 .
_:genid1 :year 2010 .

vs.

https://www.w3.org/TR/rdf11-concepts/#graph-isomorphism

Nodes:

URIs:

:Berlin

Literals:

"2010"^^xsd:integer

"3460725"^^xsd:integer

Blank Nodes:

_:bn1

Nodes:

URIs:

:Berlin

Literals:

"3460725"^^xsd:integer

"2010"^^xsd:integer

Blank Nodes:

_:genid1

M

https://www.w3.org/TR/rdf11-concepts/#graph-isomorphism

42

RDF Dataset

To talk about a collection of RDF graphs, we use the RDF Dataset.

In an RDF dataset, graphs can be identified using a name

The name can be a URI or a blank node

There can be one graph without a name, the default graph

The name does not need to have any meaning for the graph

Definition (Named Graph, RDF Dataset): Let 𝒢 be the set of RDF graphs and 𝒰
be the set of URIs. A pair < 𝑔, 𝑢 >∈ 𝒢 × 𝒰 is called a named graph. An RDF

dataset consists of a (possibly empty) set of named graphs (with distinct

names) and a default graph 𝑔 ∈ 𝒢 without a name.

Example:

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

Name Graph

<http://example.org/doc.ttl> d:Berlin d:state d:DE .
d:Berlin d:label "Berlin"@de .

<http://dbpedia.org/data/Berlin.ttl> dbr:Berlin dbo:areaCode 030 .
dbr:Berlin dbo:kfz "B" .

d:Berlin owl:sameAs dbr:Berlin .

Considering the following prefix declarations:

@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbp: <http://dbpedia.org/property/> .
@prefix d: <http://example.org/doc.ttl#> .

43

Combining 2 RDF Graphs: Union

No blank nodes in the RDF graphs RDF graph combination trivial

Simply take the union of the RDF triples in the RDF graphs

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

:DE

:Berlin

:state

Berlin
:label

:DE:Berlin
:state

Berlin
:label

:Berlin

+

=

44

Combining 2 RDF Graphs: Merge

Shared blank nodes need to be made distinct

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

+

=

:Berlin

3382169

:population

2000

3460725
:value

2010
:year

:population
:Berlin

:Berlin

:population 3460725

2010

3382169

2000

:year

:year

:value

:value

:Berlin

:population 3460725

2010

3382169

2000

:year

:year

:value

:value:population

Union
Merge

:year

:value

45

RDF Merge Example in Triples

Consider the following RDF graphs:
G:

@prefix : <http://example.org/doc.ttl#>.
:Berlin :population _:pop .
_:pop :value 3382169 ; :year 2000 .

E:

@prefix : <http://example.org/doc.ttl#>.
:Berlin :population _:pop .
_:pop :value 3460725 ; :year 2010 .

Incorrect merge of G and E:
G1:

@prefix : <http://example.org/doc.ttl#>.
:Berlin :population _:pop .
_:pop :value 3382169 ; :year 2000 .
_:pop :value 3460725 ; :year 2010 .

Correct merges of G and E:
G2:

@prefix : <http://example.org/doc.ttl#>.
:Berlin :population _:pop1, _:pop2 .
_:pop1 :value 3382169 ; :year 2000 .
_:pop2 :value 3460725 ; :year 2010 .

G3:

@prefix : <http://example.org/doc.ttl#>.
:Berlin :population _:pop1, _:pop2 .
_:pop2 :value 3382169 ; :year 2000 .
_:pop1 :value 3460725 ; :year 2010 .

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

47

CC - Creative Commons Licensing

The slides were prepared by Tobias Käfer, Andreas Harth, and Lars Heling

This content is licensed under a Creative Commons Attribution 4.0

International license (CC BY 4.0):

http://creativecommons.org/licenses/by/4.0/

AI4Industry | Knowledge Graphs II: RDF | Dr. Tobias Käfer

http://creativecommons.org/licenses/by/4.0/

Source: http://lod-cloud.net

AI4INDUSTRY SUMMER SCHOOL

KIT – The Research University in the Helmholtz Association www.kit.edu

Knowledge Graphs III: SPARQL

Dr. Tobias Käfer

3

CC - Creative Commons Licensing

The slides were compiled by Tobias Käfer, prepared by Lars Heling based on

Andreas Harth’s input, with major modifications by Maribel Acosta

This content is licensed under a Creative Commons Attribution 4.0

International license (CC BY 4.0):

http://creativecommons.org/licenses/by/4.0/

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

http://creativecommons.org/licenses/by/4.0/

4

Agenda

1. Introduction

2. Structure of SPARQL Queries

3. Basic Graph Patterns

4. Querying Multiple (Named) RDF Graphs

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

5

Example Question

How can we answer this question over RDF data?

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

“What are the boroughs of Berlin?”

6

Retrieving Data from a Dataset

How to retrieve data from a dataset?

Queries are used in order to retrieve relevant data from a dataset

Relational databases:

A set of tuples is stored in a table (Relation)

Structured Query Language (SQL)

Graph databases:

What is a dataset in RDF?

How can we query data represented in RDF?

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

Relation: Cities

Name Population BoroughOf

Oststadt 21 091 Karlsruhe

Pankow 384 367 Berlin

… … …

SELECT Name
FROM Cities
WHERE BoroughOf = “Berlin” ;

7

RDF Datasets

A collection of graphs is called an RDF dataset.

An RDF dataset has one default graph without a name,

and

zero or more graphs with a name (a URI)

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

8

SPARQL

Acronym:

SPARQL Protocol And RDF Query Language

Specified by W3C

Current version: SPARQL 1.1 (March 2013)

There are eleven SPARQL Recommendations, covering:

Syntax and semantics of queries over RDF

Protocol to pose queries against a SPARQL endpoint and to retrieve results

Various serialisations of query results

Entailment regimes

Update language

Federated query

…

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

1 http://www.w3.org/TR/sparql11-overview/

1

9

Agenda

1. Introduction

2. Structure of SPARQL Queries

3. Basic Graph Patterns

4. Querying Multiple (Named) RDF Graphs

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

10

Back to Our Question

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

“What are the boroughs of Berlin?”

PREFIX ex: <http://example.org/cities.ttl#>

SELECT ?borough
FROM <http://example.org/cities.ttl>
WHERE {

(Some conditions)
}

11

Components of SPARQL Queries (1)

Prefix definitions:

PREFIX keyword to introduce CURIEs

Subtly different from Turtle syntax

• The final period is not used

• No “@” at the beginning

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

PREFIX ex: <http://example.org/cities.ttl#>

SELECT ?borough
FROM <http://example.org/cities.ttl>
WHERE {

(Some conditions)
}

12

Components of SPARQL Queries (2)

Query form:

ASK, SELECT, DESCRIBE, or CONSTRUCT

Details in a bit…

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

PREFIX ex: <http://example.org/cities.ttl#>

SELECT ?borough
FROM <http://example.org/cities.ttl>
WHERE {

(Some conditions)
}

13

Components of SPARQL Queries (3)

Variable projection:

Variables are “placeholders” for RDF terms

Variables are prefixed using “?” or “$”

To select all variables contained in a query: “SELECT * “

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

PREFIX ex: <http://example.org/cities.ttl#>

SELECT ?borough
FROM <http://example.org/cities.ttl>
WHERE {

(Some conditions)
}

14

Components of SPARQL Queries (4)

Dataset selection:

FROM or FROM NAMED keyword to specify the RDF dataset

Indicates the sources for the data against which to find matches

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

PREFIX ex: <http://example.org/cities.ttl#>

SELECT ?borough
FROM <http://example.org/cities.ttl>
WHERE {

(Some conditions)
}

15

Components of SPARQL Queries (5)

Query pattern:

Specifies what we want to query

Contains graph patterns that are matched against RDF data

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

PREFIX ex: <http://example.org/cities.ttl#>

SELECT ?borough
FROM <http://example.org/cities.ttl>
WHERE {

(Some condition)
}

16

Components of SPARQL Queries (6)

Sequence modifiers:

Modify the result set (query answers)

ORDER BY changes the order of the result set

LIMIT, OFFSET selects chunks of the result set

DISTINCT (after SELECT), removes duplicate answers

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

PREFIX ex: <http://example.org/cities.ttl#>

SELECT ?borough
FROM <http://example.org/cities.ttl>
WHERE {

(Some condition)
} ORDER BY ?borough

17

Query Forms

There are four different query forms that SPARQL supports:

SELECT

CONSTRUCT

ASK

DESCRIBE

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

Return all or a subset of the solution mappings

Return a set of triples/a graph, where the mappings are filled

into a specific graph pattern template

Return true or false, depending on whether there is a solution

mapping or graph pattern

Return a set of triples / a graph that describes a certain resource (URI)

18

Agenda

1. Introduction

2. Structure of SPARQL Queries

3. Basic Graph Patterns

4. Querying Multiple (Named) RDF Graphs

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

19

Triple Patterns

Building block of SPARQL queries: triple patterns.

Similar to RDF triples but with variables (specified with ? or $).

Example: Berlin is the capital of ___________.

Or:

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

ex:Berlin ?x
ex:capital

ex:Berlin ex:capital ?x .

20

http://example.org/cities.ttl

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

ex:population

ex:population

ex:Germany

ex:Berlin

“384367“^^xsd:integer

ex:Spree

ex:Havel

ex:Neukoelln

ex:Pankow

ex:capital

ex:state

ex:population

ex:borough

ex:locatedOnBank

ex:borough

ex:locatedOnBank

“3500000“^^xsd:integer

“325716“^^xsd:integer

‘‘Neukölln“

@de

ex:name

‘‘Berlin“

ex:name

‘‘Neukolln“

@en
ex:name

“What are the boroughs of Berlin?”

21

http://example.org/cities.ttl

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

“What are the boroughs of Berlin?”

{
?berlin ex:name ”Berlin“ .
?borough ex:borough ?berlin .

}

22

Basic Graph Pattern (1)

Basic Graph Pattern (BGP) contains several triple patterns.

BGPs represent conjunction of triple patterns.

Example:

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

{
?borough ex:borough ex:Berlin .
?borough ex:population ?population .

}

A variable may be used on the subject, predicate or object position

The following BGP obtains the boroughs of ex:Berlin
and the population of the boroughs

23

Basic Graph Pattern (2)

BGPs can be specified using Turtle syntax

Example:

In BGPs blank nodes are treated similar to variables.

Example:

But: blank nodes may only appear on subject and object position of a triple

pattern.

In contrast to variables, one may not specify blank nodes in the query
form (e.g., SELECT)

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

{ ?borough ex:borough ?berlin ;
ex:population ?population .

?berlin ex:name “Berlin” . }

{ _:bn1 ex:name ?name .
_:bn1 ex:population ?population . }

24

Exercise

Write a SPARQL query into a file that retrieves all systems from your file

that you uploaded to the solid pod, my RDF file would contain:

@prefix : <http://example.org/#> .

:myProductionSystem a :System ;

:hasSubSystem :roboticArm1 , :conveyorBelt2 .

:roboticArm1 a :System , :RoboticArm ;

:hasManufacturer :ABB .

:conveyorBelt2 a :System ;

:hasSpeed "0.1" .

Write the query in a text editor and save it to file myquery.rq

Use Linked Data-Fu to evaluate your query:

ldfu.sh –i http://where.is/your/turtle.ttl -q myquery.rq -

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

25

Solution Sketch

PREFIX : <http://example.org/#>

SELECT ?thing

WHERE {

?thing a :System .

}

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

26

Solution Sketch

PREFIX : <http://example.org/#>

SELECT *

WHERE {

?thing a :System ; :hasSubSystem ?sub .

}

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

31

Agenda

1. Introduction

2. Structure of SPARQL Queries

3. Basic Graph Patterns

4. Querying Multiple (Named) RDF Graphs

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

32

Multiple Graphs

Information may be spread over several documents

Therefore, several documents should be addressable in a query

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

SPARQL-Engine

Result

33

Multiple Graphs

SPARQL supports handling multiple graphs:

These graphs may be different data sources

Graphs can be added using the FROM keyword

All graphs specified in the FROM clause are combined to a default graph

SPARQL supports handling of multiple named graphs:

Using the FROM NAMED keyword

These graphs can be accessed using the GRAPH keyword

Used to query data from specific graphs

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

To identify the triples belonging to a graph data we

extend the triple model to quadruples, to be able to

hold information on the context (name of the graph).

34

Multiple Graphs - Example

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

PREFIX ex : <...>
SELECT *
FROM ex:g1
FROM ex:g2
FROM NAMED ex:g3
FROM NAMED ex:g4
WHERE
{
…
?s ?p ?o.
GRAPH ex:g3 { ... }
GRAPH ?graph { ... }
}

ex:g1

ex:g2

Default

graph

ex:g3

ex:g4

Named Graphs

RDF merge

38

SPARQL Query Processors vs. SPARQL Endpoints

Query Processor

Acts as user agent

Graphs are retrieved via

HTTP during query

processing

Default graph is empty, so

queries require

FROM/FROM NAMED

clauses

Endpoint

Acts as server

Graphs are indexed and

stored on disk during

installation (like a

database)

Default graph is

configured, so no

FROM/FROM NAMED

clauses needed

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

In Linked Data-Fu, -i is a surrogate for FROM, remember:

ldfu.sh –i http://where.is/your/turtle.ttl -q myquery.rq -

39

Overview of Core SPARQL Features

Basic concepts: Triple patterns

SPARQL Query structure:

Prefix declarations: PREFIX

Query forms: ASK, SELECT, DESCRIBE, CONSTRUCT

Variable projection: Subset of variables that we want to return

Dataset selection: FROM, FROM NAMED

Query patterns

Basic Graph Patterns (BGP)

Graph Patterns (UNION, OPTIONAL, GRAPH)

Functions (FILTER, BIND AS)

Sequence modifiers: ORDER BY, LIMIT, OFFSET, DISTINCT

AI4Industry | Distributed Know ledge Graphs III: SPARQL | Dr. Tobias Käfer

Source: http://lod-cloud.net

AI4INDUSTRY SUMMER SCHOOL

KIT – The Research University in the Helmholtz Association www.kit.edu

Knowledge Graphs IV
Data Integration, Link Following, and Programming in Rules

Dr. Tobias Käfer

2

Agenda

Rules for:

Data Integration

Link following

Programming

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

3

Web Standards

Data providers publish data on web servers

Data consumers access data with user agents

Resource Description Framework

Graph-structured data: nodes (URIs, literals, blank nodes) and edges

(URIs)

Interlink information (relationships)

How can groups of people use RDF to

encode a shared understanding of a domain,

organise knowledge in a machine-processable way and

give meaning to data that can be exploited?

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

5

Ontology in Informatics

“An Ontology is a

formal specification > interpretable by machines

of a shared > based on consensus

conceptualisation > describes terminology

of a domain of interest” > models a specific topic

Studer, Benjamins and Fensel (1998) based on Gruber (1993) and Borst

(1997)

An ontology is an engineering artefact, consisting of:

A specific vocabulary (set of terms - URIs and literals) used to describe a

certain reality, plus

A set of explicit assumptions regarding the intended meaning of the

vocabulary

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

6

Ontology Spectrum

Less expressive More expressive

From 99 AAAI panel with Gruninger,

Lehmann, McGuinness, Ushold, Welty,

2000 Dagstuhl talk by McGuinness

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

8

Vocabularies and

Vocabulary Descriptions/Ontologies

Vocabularies are sets of terms, eg.

Individuals:
Entities identified via a URI or blank node; a vocabulary description may

include descriptions of identity (comes later)

Classes:
Sets of individuals identified via URIs or blank nodes; a vocabulary

description may include the characteristics of classes

Properties:
Properties identified via URIs; a vocabulary description may include the

characteristics of properties

Ontologies (vocabulary descriptions) are collections of terms together

with their (logically) defined meaning

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

9

Core Semantic Web Vocabularies

To bootstrap meaning of vocabulary terms, we could use terms that are

widely agreed; how about we use mathematics?

The W3C standardised fundamental vocabularies (based on

mathematics) that can be used to express other vocabularies.

RDF1: We consider the RDF vocabulary, i.e., the URIs defined as part

of the RDF W3C Recommendation.

RDFS2: We examine RDF Schema, a simple ontology language that

offers means to describe characteristics of classes and properties.

Throughout the slides, assume the following prefix declarations:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <#> .

1 https://www.w3.org/TR/rdf11-primer/
2 https://www.w3.org/TR/rdf-schema/

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf-schema/

10

Why Formal Semantics?

After introduction of RDF and RDFS, critcism of tool developers:

different tools were incompatible (despite the existing specification)

E.g.:

Same RDF document

Same entailment relation

Different results

Thus, a model-theoretic semantics was defined for entailment:

provides a formal specification of when truth is preserved by

transformations of RDF or operations which derive RDF triples from other

RDF triples (logical consequence).

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

11

A Classical Example for Entailment

Premise: All men are mortal

Premise: Socrates is a man

Conclusion: Socrates is mortal

In RDF using RDFS vocabulary:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <#> .

:Man rdfs:subClassOf :Mortal . # premise

:Socrates a :Man . # premise

:Socrates a :Mortal . # conclusion

Photo from Wikipedia

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

12

Layered Entailment

Higher expressivity More logical conclusions (entailments) and higher computational complexity.
Defined mathematically via sets and functions using model theory
Rules as way to implement the mentioned entailment regimes.

expressivity

OWL

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

13

Layered Entailment

Higher expressivity More logical conclusions (entailments) and higher computational complexity.
Defined mathematically via sets and functions using model theory
Rules as way to implement the mentioned entailment regimes.

expressivity

OWL

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

Interesting for
bootstrapping
the definitions
via sets and
functions

14

Layered Entailment

Higher expressivity More logical conclusions (entailments) and higher computational complexity.
Defined mathematically via sets and functions using model theory
Rules as way to implement the mentioned entailment regimes.

expressivity

OWL

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

Tells you how to
formally define
typed literals
and when values
are the same

19

RDF VOCABULARY AND

ENTAILMENT

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

20

RDF Vocabulary

The RDF vocabulary allows to make basic statements about resources

and triples

The following table lists all RDF terms, other than the container

membership properties rdf:_1, rdf:_2, rdf:_3 ...

Class URIs Property URIs Datatype URIs Instance URIs

rdf:Property rdf:type rdf:langString rdf:nil

rdf:List rdf:first rdf:HTML

rdf:Bag rdf:rest rdf:XMLLiteral

rdf:Alt rdf:value rdf:PlainLiteral

rdf:Seq rdf:subject

rdf:Statement rdf:predicate

rdf:object

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

21

Formal Instances (rdf:type)

The URI rdf:type allows to specify that a resource is an instance of

something

For example, the following describes :Berlin as being a :City, as
follows:

:Berlin rdf:type :City .

What was the shortcut

for rdf:type in the Turtle

syntax?

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

22

rdf:Property

The term rdf:Propertydenotes the resource that contains as

members all resources occurring on predicate position in RDF triples

Given an RDF graph

:s :p :o .

we can conclude

:p rdf:type rdf:Property .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

23

Collections aka rdf:Lists

A collection is a closed group of elements

Example: Editors of the RDFS spec “Brickley”, “Guha”, “McBride”

:RDFS_Spec :editors _:genid1 .

_:genid1 rdf:first "Brickley" .

_:genid1 rdf:rest _:genid2 .

_:genid2 rdf:first "Guha" .

_:genid2 rdf:rest _:genid3 .

_:genid3 rdf:first "McBride" .

_:genid3 rdf:rest rdf:nil .
:RDFS_

Spec

_:genid1 _:genid3_:genid2 rdf:nil

“Guha”“Brickley” “McBride”

:editors

rdf:first

rdf:rest

rdf:first

rdf:rest

rdf:first

rdf:rest

rdf:nil closes

the collection

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

24

RDF Lists

Lists can only appear in subject or object position of a triple

The class rdf:List contains the RDF lists

Turtle provides a syntax abbreviation for specifying collections (“lists
structures”) by enclosing the RDF terms with ()

#the object of this triple is the RDF collection blank node

:RDFS_Spec :editors (“Brickley” “Guha” “McBride”) .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

26

RDF Axiomatic Triples

What is an axiom?

A self-evident or universally recognised truth 1

An established rule, principle, or law 1

The following triples have to be true in any RDF interpretation, by

definition:

1 http://www.thefreedictionary.com/axiom

Since the elements of a container

may be infinite, the application of

the axiomatic triples results in an

infinite interpretation

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

http://www.thefreedictionary.com/axiom

27

RDF Entailment Patterns

The following entailment patterns can be used as an easy way to apply

the RDF entailment rules to a graph

Variables are denoted with a “?” (as in SPARQL)

The patterns are applied by assigning values to the variables in the “If”

statement and adding (inferring) the “Then” statement

Patterns*:

Alternative pattern to rdfD1 (assuming generalised RDF)

For the following examples we consider our graph: http://example.org/cities.ttl

If … Then …

rdfD1 ?x ?p "sss"^^ddd . ?x ?p _:n . _:n rdf:type ddd .

rdfD2 ?x ?p ?y . ?p rdf:type rdf:Property .

* "sss" represents some Unicode string

If … Then …

GrdfD1 ?x ?p "sss"^^ddd . "sss"^^ddd rdf:type ddd .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

30

RDFS VOCABULARY AND

ENTAILMENT

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

31

RDFS Intuition and Vocabulary

The RDFS vocabulary allows to make statements about classes of

things and properties and to provide documentation to resources

RDFS entailment is a lot about the semantics of those classes and

properties

RDFS terms are:

1 http://www.w3.org/TR/rdf-schema/

rdfs:domain
rdfs:range
rdfs:subClassOf
rdfs:subPropertyOf
rdfs:member
rdfs:comment
rdfs:seeAlso
rdfs:isDefinedBy
rdfs:label

rdfs:Resource
rdfs:Literal
rdfs:Datatype
rdfs:Class
rdfs:Container
rdfs:ContainerMembershipProperty

Properties: Classes:

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

http://www.w3.org/TR/rdf-schema/

32

Classes – Analogy to Set Theory

Individuals represent elements of a set

Classes represent a set that is identified via a URI or a blank node

India

Germany

Spain

Brazil

Mexico

Country

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

33

To define the class:

rdf:type rdfs:Class

To relate instances to the class:

rdf:type

Classes: Example (1)

The class of countries

Country

India

Germany

Spain

Brazil

:Country rdf:type rdfs:Class .

:India rdf:type :Country .
:Germany rdf:type :Country .
:Spain rdf:type :Country .
:Brazil rdf:type :Country .

URI of the class

Instances of the class

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

34

Class Hierarchies

Given several classes, we can specify a hierarchical relationship

between them: the subclass relation

In RDFS, a class may have several subclasses, and a class can be a

subclass of several (super)classes

Example:

We have two classes: :Country and :EuropeanCountry

We want to say that everything that is a European country is also a country

That is, :EuropeanCountry is a subclass of :Country

We use rdfs:subClassOf to specify the subclass relationship:

:EuropeanCountry rdfs:subClassOf :Country .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

35

Class Hierarchies – Analogy to Set Theory

rdf:type corresponds to ∈

rdfs:subClassOf corresponds to ⊆

India

Germany

Spain

Brazil

Mexico

Country

European

Country

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

36

RDFS Axiomatic Triples

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

37

RDFS Entailment Patterns
If… Then…

rdfs1 Any URI ddd in D ddd rdf:type rdfs:Datatype .

rdfs2 ?p rdfs:domain ?x . ?y ?p ?z . ?y rdf:type ?x .

rdfs3 ?p rdfs:range ?x . ?y ?p ?z . ?z rdf:type ?x .

rdfs4a ?x ?p ?z . ?x rdf:type rdfs:Resource .

rdfs4b ?y ?p ?z . ?z rdf:type rdfs:Resource .

rdfs5 ?x rdfs:subPropertyOf ?y .
?y rdfs:subPropertyOf ?z .

?x rdfs:subPropertyOf ?z .

rdfs6 ?x rdf:type rdf:Property . ?x rdfs:subPropertyOf ?x .

rdfs7 ?p2 rdfs:subPropertyOf ?p1 .
?x ?p2 ?y.

?x ?p1 ?y .

rdfs8 ?x rdf:type rdfs:Class . ?x rdfs:subClassOf rdfs:Resource .

rdfs9 ?x rdfs:subClassOf ?y .
?z rdf:type ?x .

?z rdf:type ?y .

rdfs10 ?x rdf:type rdfs:Class . ?x rdfs:subClassOf ?x .

rdfs11 ?x rdfs:subClassOf ?y .
?y rdfs:subClassOf ?z .

?x rdfs:subClassOf ?z .

rdfs12 ?x rdf:type rdfs:ContainerMembershipProperty. ?x rdfs:subPropertyOf rdfs:member .

rdfs13 ?x rdf:type rdfs:Datatype . ?x rdfs:subClassOf rdfs:Literal .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

38

RDFS Entailment Patterns – rdfs9

Example:

:City rdfs:subClassOf :Location .

?x rdfs:subClassOf ?y .

:Pankow rdf:type :Location .

?z rdf:type ?y .

If:

Then:

:Pankow rdf:type :City .

?z rdf:type ?x .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

39

MORE EXPRESSIVE

ENTAILMENT REGIMES

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

40

Extending RDFS with other useful features

OWL is a fairly expressive ontology language

RDFS plus, RDFS 3.0, OWL LD „extend“ RDFS entailment with the

semantics of some terms from OWL such as:

owl:sameAs

owl:equivalentProperty

owl:inverseOf

…

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

41

IMPLEMENTING ENTAILMENT

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

42

Approaches for Evaluating Entailment Patterns

Examples for when users are interested in the derived knowledge

Queries, eg. of downstream applications

Conditions for actions outside the realm of the

Approaches:

Materialization / forward chaining

Query rewriting / backward chaining

Hybrid approaches

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

43

Algorithm for Materialisation:

Extend the Graph with Inferred Triples

Require: assertions ▷ Graph

Require: rules ▷ Derivation rules

var data, oldData: set<triple>

var fixpointReached: boolean

data.clear()

data.add(assertions)

repeat ▷ Loop for determining the fixpoint
fixpointReached true
for rule : rules do

if rule.matches(data) then
oldData = data.copy()

if rule.type==derivation then
data.add(rule.match(data).data)

end if
if ! data.copy().remove(oldData).isEmpty() then

fixpointReached false

end if

end if
end for

until fixpointReached

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

45

Notation3 Rule Syntax

We introduce Notation3 (N3), a superset of Turtle syntax

N3 extends the RDF data model with

variables (prefixed with a ?) and

graph quoting (via {}) for subject and object of a triple

Together with a URI for implication
(<http://www.w3.org/2000/10/swap/log#implies>, shortcut: =>),

we can encode rules in N3 syntax.

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

46

Notation3 Derviation Rules

A N3 rule is of the form { body } => { head } .

The body of a rule (the „if“ part) is also called antecedent

The head of a rule (the „then“ part) is also called consequent

The body is a set of triple patterns: a BGP

The head is a graph template

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

47

Example: RDFS Entailment Patterns as Rules

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{ ?x rdfs:subPropertyOf ?y .
?y rdfs:subPropertyOf ?z . } => { ?x rdfs:subPropertyOf ?z . } .

Entailment pattern rdfs5 as derivation rule:

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

48

Exercise: Query Evaluation with Materialization

Given the following RDF graph G available at

http://example.org/persons and the SPARQL expression E. Assume all

the prefix definitions.

Query Q:

SELECT ?p WHERE { ?p a foaf:Agent }

Entailment regime R with the following set of rules:
{ { ?x owl:equivalentClass ?y . } => { ?y owl:equivalentClass ?x . },

{ ?x owl:equivalentClass ?y . ?a rdf:type ?x . } => { ?a rdf:type ?y .},
{ ?x rdfs:subClassOf ?y . ?a rdf:type ?x . } => { ?a rdf:type ?y . } }

Materialise R on the graph G and evaluate Q.

:Magneto a dbo:Person ;
rdfs:label "Max Eisenhardt" .

foaf:Person rdfs:subClassOf foaf:Agent .
foaf:Person owl:equivalentClass dbo:Person .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

49

Agenda

Rules for:

Reasoning

Link following

Programming

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

50

How to Combine Link-Following and Querying?

The Linked Data principles point towards combining web architecture

with knowledge representation

But all the bits and pieces we have seen so far do not fit yet:

We can dereference URIs of things via HTTP, view the resulting RDF

and follow links (e.g., in the RDF browser)

OR

We can query RDF documents with SPARQL given a fixed set of URIs

to documents in FROM/FROM NAMED clauses

BUT

How how do we query Linked Data while following links?

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

51

General User Agent Model

Characteristics of a generic user agent

on the web (e.g., web browser):

1. The user agent starts its interaction based on a

specific seed URI

2. The user agent performs HTTP requests on URIs and

parses the response

3. Based on the response the user agent has one or

multiple choices as to which interaction to perform next

4. The user agent decides which link to follow and

initiates a new request

http://slideplayer.com/slide/8080871/

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

53

Reduction to What we Learnt:

Crawl-Index-Serve

Crawl-index-serve architecture for Linked Data:

Crawl Linked Data (on the level of documents, parse RDF into quads), specify
the amount of hops for expansion

Load the resulting RDF Dataset (quads) into a SPARQL store

Serve query solutions from the SPARQL store

Materialising the data (crawling, indexing) takes time

Indexes of Linked Data get outdated [1]

Indiscriminate expansion of links

Requires many systems (crawler, SPARQL store), server capacity

Possibly too much overhead if users are interested in the solution to a
single query

How about more clever user agents? That run on people’s
computers?

That access live data?

[1] Käfer, Umbrich, Abdelgayed, O‘Byrne, Hogan: Observing Linked Data Dynamics. Proc. 11th Extended Semantic Web Conference (2013).

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

54

Linked Data Principles1

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the

standards (RDF*, SPARQL)

4. Include links to other URIs, so that they can discover more things.

1 http://www.w3.org/DesignIssues/LinkedData.html

Tim Berners-Lee presenting Linked Data. TED CC-BY-ND

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

http://www.w3.org/DesignIssues/LinkedData.html

55

Two Perspectives on the Linked Data Principles

Server (Publisher)

1. Coin URIs to name things.

2. Use a HTTP server to provide

access to documents.

3. Upon receiving a request for a

URI, the server returns useful

information (about the URI in

the request) in RDF and RDF

Schema.

4. The “useful information” the

server returns in the RDF

document includes links to

other URIs (on other servers).

User Agent (Consumer)

1. Assume URIs as names for

things.

2. User agents look up HTTP

URIs.

3. User agents process

RDF/RDFS documents

containing useful information

and provide the ability to

evaluate SPARQL queries.

4. User agents can discover more

things via accessing links to

other URIs.

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

58

Operating on a Fixed RDF Dataset

Until now, both in querying and with entailment, we have assumed that

the data over which we operate is fixed at the beginning of the

processing.

That is, we have assumed a fixed RDF Dataset.

Triple

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

59

Operating on the Web as RDF Dataset

We would like to use the entire Linked Data web, i.e., a huge RDF

dataset Web, as basis for querying.

But the web is too big; downloading the entire web is impractical.

One of the core features of the web are hyperlinks.

A user agent starts from an entry point and then follows links.

Following links can lead to hitherto unknown servers, with unknown

data of unknown schema.

How can we specify a (finite) RDF dataset in a flexible way?

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

60

Dereferencing URIs1

We define ways for accessing RDF graphs published on the web as

Linked Data

Linked Data provides a combination of knowledge representation

language (RDF, RDFS) and web architecture (HTTP)

A key characteristic of Linked Data is the tight connection between an

identifier and a source, i.e., the name for a thing2 is associated with the

document where one can find related information

1 See also in Chapter 2
2 “non-information” resource, not defined in any RFC, which only know “other resources” and “information resources”.

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

65

Motivation for Request Rules

We want to specify an RDF dataset constructed during query

evaluation

Start with a seed URI, and then follow hyperlinks other data sources

Given a set of links within a dataset we need to specify:

Which links to follow?

Order of following links?

How far to follow links?

Request rules as a way to specify traversal

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

66

Representing HTTP Requests in RDF

To model HTTP requests in RDF we require a vocabulary for HTTP

requests (and headers)

Namespace for the core terms of HTTP vocabulary1 in RDF:

We also make use of a vocabulary for HTTP methods and HTTP

headers

Using the HTTP vocabulary, we are able to represent any kind of

HTTP-interaction using RDF

http://www.w3.org/2011/http#

1http://www.w3.org/TR/HTTP-in-RDF10/

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

67

HTTP Vocabulary: Example

Let us consider the simple request:

Represented using the HTTP vocabulary:

GET /article/420 HTTP/1.1

Host: example.org

Accept: text/turtle

@prefix http: <http://www.w3.org/2011/http#> .
@prefix httpm: <http://www.w3.org/2011/http-methods#> .
@prefix httph: <http://www.w3.org/2011/http-headers#> .

[] a http:Request;
http:requestURI "/article/420";
http:httpVersion "1.1";
http:mthd httpm:GET;
http:headers ([http:hdrName httph:host ;

http:fieldValue "example.org"]
[http:hdrName httph:accept ;

http:fieldValue "text/turtle"]) .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

68

Syntax of Request Rules in Notation3

Request with both fixed and variable request targets can appear as the

head of a request rule

Form:

Properties:

Existential: head contains blank nodes

Safe: all variable are part of both head and body of the rule

body head

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

69

Request Rule – Example 1

Request URIs of people that Andreas knows

Request rules allow for fine-grained manner to determine

which resources to retrieve and which links to follow

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

70

Request Rule – Example 2

The following rule dereferences all class URIs that occur in the data:

@prefix http: <http://www.w3.org/2011/http#> .
@prefix httpm: <http://www.w3.org/2011/http-methods#> .

{
?s a ?c .

} => {
[] http:method httpm:GET ;

http:requestURI ?c .
} .

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

71

Algorithm for

Constructing

an RDF

Dataset

Based on

Request

Rules

(Integrated

using

Derivation

Rules)

Require: assertions ▷ Graph

Require: rules ▷ Derivation and GET request rules

var data, oldData: set<triple>

var fixpointReached: boolean

data.clear()

data.add(assertions)

repeat ▷ Loop for determining the fixpoint
fixpointReached <- true
for rule : rules do

if rule.matches(data) then
oldData = data.copy()

if rule.type==derivation then
data.add(rule.match(data).data)

else▷ So the rule must be an interaction rule
if rule.match(data).request.type==GET then

data.add(rule.match(data).request.execute())

end if

end if
if ! data.copy().remove(oldData).isEmpty() then

fixpointReached <- false

end if

end if
end for

until fixpointReached

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

72

Linked Data-Fu Overview

Approach for accessing, integrating, querying and manipulating web

data

The language allows developers to specify interactions using rules

The engine executes desired interactions in parallel

Derivation rules support reasoning

constructs, e.g., transitivity,

reflexivity of properties

Request rules specify how and

when to interact with resources,

i.ie., retrieve the state of

resources (sense) or manipulate

the state of resources (act)

http://linked-data-fu.github.io/

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

Stadtmüller, Speiser, Harth, Studer: Data-Fu: a language and an interpreter for interaction with read/write linked data. WWW 2013

http://linked-data-fu.github.io/

73

Linked Data-Fu

A system to

execute programs with request rules to construct a RDF dataset

apply entailment patterns expressed in Notation3

process SPARQL queries, including entailment, over the RDF dataset

created via link-following

Linked Data-Fu programs run as user agents

Request rules can specify link-following based on HTTP GET requests

With allowing additional HTTP requests (PUT, POST, DELETE), the user

agents can effect change in resource state

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

74

Agenda

Rules for:

Reasoning

Link following

Programming

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

75

From Linked Data to Read-Write Linked Data

With HTTP GET requests, one can implement systems that answer

queries on data published on the web

But HTTP has more request methods:

HTTP POST is used on the web to handle HTML forms and can be used

to create resources

HTTP PUT can be used to overwrite resource state

HTTP DELETE can be used to delete resources

With POST, GET, PUT and DELETE, one can implement applications

that require CRUD (create-read-update-delete) operations on web

architecture

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

78

Putting the Web back into the Semantic Web

Linked Data Platform (W3C

recommendation specified led by

IBMers)

Read-Write interaction with Linked

Data resources and collections of

Linked Data resources

Solid: Social Linked Data

Conventions and tools (mainly

JavaScript) for building decentralised

social applications based on Read-

Write Linked Data

Users store personal data in "pods"

(personal online data stores) hosted

wherever the user desires

Web of Things

The article in the Scientific American is a lot about ontologies

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

80

Programming User Agents: ASM4LD [0]

Aim: Execution of agent specifications on Read-Write Linked Data

Inspired by Simple Reflex Agents [1]

Based on:

Abstract State Machines [2]

Model-theoretics semantics of RDF

Message semantics of HTTP

In a nutshell:

while(true):

sense()

think()

act()

[0] Käfer & Harth: Rule-based Programming of User Agents for Linked Data. LDOW@WWW 2018
[1] Russell & Norvig: Artificial Intelligence – A Modern Approach. Prentice Hall (2003)
[2] Gurevich:. "Evolving algebras 1993: Lipari guide." Specification and validation methods (1995)

{ }=>{ }.

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

81

Algorithm to

combine

materialisation,

link following,

and

programming

Require: assertions ▷Graph
Require: rules ▷ Derivation and request rules
var data, oldData: set<triple>
var fixpointReached: Boolean
var unsafeRequests: set<request>
while true do▷ Loop of the ASM steps

unsafeRequests.clear()

data.clear()

data.add(assertions)

repeat ▷ Loop for determining the fixpoint and the update set
fixpointReached <- true

for rule : rules do
if rule.matches(data) then

oldData = data.copy()
if rule.type==derivation then

data.add(rule.match(data).data)

else ▷ So the rule must be an interaction rule
if rule.match(data).request.type==GET then

data.add(rule.match(data).request.execute())
else

unsafeRequests.add(rule.match(data).request)
end if

end if

if ! data.copy().remove(oldData).isEmpty() then
fixpointReached <- false

end if

end if
end for

until fixpointReached

for request : unsafeRequests do ▷ Enacting the update set
request.execute()

end for

end while

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

82

Turn the Light On in Linked Data-Fu

Loop
{ [] a http:Request ;

http:hasMethod httpM:GET ;
http:requestURI </ambient/light> . }

{ [] a http:Request ;
http:hasMethod httpM:GET ;
http:requestURI </relay/1> . }

{ </ambient/light> rdf:value ?val .
?val math:lessThan 0.5 .
</relay/1#r> :isOn false . }

=>
{ [] a http:Request ;

http:hasMethod httpM:PUT ;
http:requestURI </relay/1> ;
http:body
{ </relay/1#r> :isOn true . } . } .

SENSE:

Retrieve the

world state

ACT:

…manipulate

the world state

THINK:

Conditionally…

{

<

0
.
5
}
=
>

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

83

Higher-level Ways of Programming Agents

We can use ASM4LD to give operational semantics to ontologies

WiLD – Workflows in Linked Data

A flow-based workflow language

Käfer and Harth: „Specifying, Monitoring, and Executing Workflows in

Linked Data“. Proc. ISWC 2018.

GSM4LD

An artifact-centric workflow language

Jochum, Nürnberg, Aßfalg, Käfer: „Data-Driven Workflows for Specifying

and Executing Agents in an Environment of Reasoning and RESTful

Systems”. Proc. WS AI4BPM @ BPM 2019.

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

84

We encoded in Linked Data-Fu rules:

Movement of the avatar according to

Kinect data

Detection of user gestures

Movement of the map according to

gestures

Loading of concert data from the web

Data integration between VR RWLD API,

concert LD API, Kinect LD API

Execution at Kinect sensor refresh rate
(30Hz)

Load nearby
concerts
from the
Web

Request
more
information
on concert

Move
the
map

Kinect tracks user
Avatar moves accordingly

Gestures trigger actions

User

Kinect

3 Laptops:

• Virtual Reality Read-Write Linked Data API

• Kinect Linked Data API

• Linked Data-Fu w/ web access

Keppmann, Käfer, Stadtmüller, Schubotz, Harth: "High Performance Linked Data Processing for Virtual Reality Environments". P&D ISWC 2014.

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

Integration of Distributed Systems using Linked

Data: Example: a Virtual Reality System

89

Exercise

Add a rdfs:seeAlso link from your document to <https://ci.mines-

stetienne.fr/kg/>

Create a rule that follows rdfs:seeAlso links

Run
ldfu.sh –i http://where.is/your/turtle.ttl -p rule-to-follow-
rdfs-seeAlso.n3 -q myquery.rq -

Add a triple with rdfs:subClassOf that relates your System class with

ssn:System

Change your SPARQL query such that it looks for ssn:System

Run
ldfu.sh –i http://where.is/your/turtle.ttl -p rule-to-follow-
rdfs-seeAlso.n3 -p rulesets/rdfs.n3 -q myquery.rq -

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

90

THANKS FOR YOUR

ATTENTION!

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

91

Creative Commons Licensing

The slides have been prepared by Tobias Käfer, Andreas Harth, and

Lars Heling

This content is licensed under a Creative Commons Attribution 4.0

International license (CC BY 4.0):

http://creativecommons.org/licenses/by/4.0/

AI4Industry | Know ledge Graphs IV: Rules for Many Purposes | Dr. Tobias Käfer

http://creativecommons.org/licenses/by/4.0/

